Compressing Convolutional Neural Networks
نویسندگان
چکیده
Convolutional neural networks (CNN) are increasingly used in many areas of computer vision. They are particularly attractive because of their ability to “absorb” great quantities of labeled data through millions of parameters. However, as model sizes increase, so do the storage and memory requirements of the classifiers. We present a novel network architecture, Frequency-Sensitive Hashed Nets (FreshNets), which exploits inherent redundancy in both convolutional layers and fully-connected layers of a deep learning model, leading to dramatic savings in memory and storage consumption. Based on the key observation that the weights of learned convolutional filters are typically smooth and low-frequency, we first convert filter weights to the frequency domain with a discrete cosine transform (DCT) and use a low-cost hash function to randomly group frequency parameters into hash buckets. All parameters assigned the same hash bucket share a single value learned with standard back-propagation. To further reduce model size we allocate fewer hash buckets to high-frequency components, which are generally less important. We evaluate FreshNets on eight data sets, and show that it leads to drastically better compressed performance than several relevant baselines.
منابع مشابه
Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملUltimate tensorization: compressing convolutional and FC layers alike
Convolutional neural networks excel in image recognition tasks, but this comes at the cost of high computational and memory complexity. To tackle this problem, [1] developed a tensor factorization framework to compress fully-connected layers. In this paper, we focus on compressing convolutional layers. We show that while the direct application of the tensor framework [1] to the 4-dimensional ke...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملThe Compressed Model of Residual CNDS
Convolutional neural networks have achieved a great success in the recent years. Although, the way to maximize the performance of the convolutional neural networks still in the beginning. Furthermore, the optimization of the size and the time that need to train the convolutional neural networks is very far away from reaching the researcher's ambition. In this paper, we proposed a new convolutio...
متن کاملCompressing deep convolutional neural networks in visual emotion recognition
In this paper, we consider the problem of insufficient runtime and memory-space complexities of deep convolutional neural networks for visual emotion recognition. A survey of recent compression methods and efficient neural networks architectures is provided. We experimentally compare the computational speed and memory consumption during the training and the inference stages of such methods as t...
متن کاملIterative Low-Rank Approximation for CNN Compression
Deep convolutional neural networks contain tens of millions of parameters, making them impossible to work efficiently on embedded devices. We propose iterative approach of applying low-rank approximation to compress deep convolutional neural networks. Since classification and object detection are the most favored tasks for embedded devices, we demonstrate the effectiveness of our approach by co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1506.04449 شماره
صفحات -
تاریخ انتشار 2015